Abstract

Objective: This study evaluated muscle ultrasound in spondyloarthritis (SpA) patients receiving biologic disease-modifying anti-rheumatic drugs (b-DMARDs) early in treatment.

Methods: A prospective study was conducted with 110 b-DMARD-naive SpA patients. The baseline and control muscle strength, physical performance tests, ultrasonographic muscle parameters, and disease activity scores of 67 controlled patients were examined.

Results: During the follow-up period, there were significant improvements in the thickness of the gastrocnemius medialis (GM) muscle (p<0.001), the length of the GM fascicle (p=0.031), the thickness of the rectus femoris (RF) muscle (p<0.001), the cross-sectional area of the RF (RFCSA) muscle (p<0.001), the thickness of the rectus abdominis (RA) muscle (p<0.001), the thickness of the transverse abdominis (TA) muscle (p=0.004), and the thickness of the external oblique (EO) muscle (p=0.042). Besides, ASDAS-CRP scores were related to GM muscle thickness, RFCSA, and TA muscle thickness percent changes in patients whose disease activity regressed from high to moderate (respectively; p=0.030, p=0.040, p=0.002).

Conclusion: Muscle ultrasound examination can show muscle mass improvement in SpA patients during treatment.

Keywords: DMARDs, muscle ultrasonography, outcome measures, spondyloarthritis

Copyright and license

How to cite

1.
Hafızoğlu M, Özsoy Z, Öztürk ZÖ, et al. Muscle ultrasound in Spondyloarthritis patients receiving biologic disease-modifying anti-rheumatic drugs early in treatment. Clin Sci Nutr. 2024;Early View:1-9. doi:10.62210/ClinSciNutr.2024.94

References

  1. Andreasen RA, Kristensen LE, Ellingsen T, et al. Clinical characteristics of importance to outcome in patients with axial spondyloarthritis: protocol for a prospective descriptive and exploratory cohort study. BMJ Open. 2017;7:e015536. https://doi.org/10.1136/bmjopen-2016-015536
  2. El Maghraoui A, Ebo'o FB, Sadni S, Majjad A, Hamza T, Mounach A. Is there a relation between pre-sarcopenia, sarcopenia, cachexia and osteoporosis in patients with ankylosing spondylitis? BMC Musculoskelet Disord. 2016;17:268. https://doi.org/10.1186/s12891-016-1155-z
  3. Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W. Changes in body composition and bone mineral density in postmenopausal women with psoriatic arthritis. Reumatologia. 2017;55:215-221. https://doi.org/10.5114/reum.2017.71627
  4. Sveaas SH, Berg IJ, Provan SA, et al. Circulating levels of inflammatory cytokines and cytokine receptors in patients with ankylosing spondylitis: a cross-sectional comparative study. Scand J Rheumatol. 2015;44:118-124. https://doi.org/10.3109/03009742.2014.956142
  5. Pistilli EE, Jackson JR, Alway SE. Death receptor-associated pro-apoptotic signaling in aged skeletal muscle. Apoptosis. 2006;11:2115-2126. https://doi.org/10.1007/s10495-006-0194-6
  6. Rall LC, Roubenoff R. Rheumatoid cachexia: metabolic abnormalities, mechanisms and interventions. Rheumatology (Oxford). 2004;43:1219-1223. https://doi.org/10.1093/rheumatology/keh321
  7. Aguiar R, Sequeira J, Meirinhos T, Ambrósio C, Barcelos A. SARCOSPA - Sarcopenia in spondyloarthritis patients. Acta Reumatol Port. 2014;39:322-326.
  8. Perkisas S, Baudry S, Bauer J, et al. Application of ultrasound for muscle assessment in sarcopenia: towards standardized measurements. Eur Geriatr Med. 2018;9:739-757. https://doi.org/10.1007/s41999-018-0104-9
  9. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16-31. https://doi.org/10.1093/ageing/afy169
  10. Rudwaleit M, van der Heijde D, Landewé R, et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis. 2011;70:25-31. https://doi.org/10.1136/ard.2010.133645
  11. Kalyoncu U, Taşcılar EK, Ertenli Aİ, et al. Methodology of a new inflammatory arthritis registry: TReasure. Turk J Med Sci. 2018;48:856-861. https://doi.org/10.3906/sag-1807-200
  12. Garrett S, Jenkinson T, Kennedy LG, Whitelock H, Gaisford P, Calin A. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol. 1994;21:2286-2291.
  13. Akkoc Y, Karatepe AG, Akar S, Kirazli Y, Akkoc N. A Turkish version of the Bath Ankylosing Spondylitis Disease Activity Index: reliability and validity. Rheumatol Int. 2005;25:280-284. https://doi.org/10.1007/s00296-003-0432-y
  14. Calin A, Garrett S, Whitelock H, et al. A new approach to defining functional ability in ankylosing spondylitis: the development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol. 1994;21:2281-2285.
  15. Ozer HT, Sarpel T, Gulek B, Alparslan ZN, Erken E. The Turkish version of the Bath Ankylosing Spondylitis Functional Index: reliability and validity. Clin Rheumatol. 2005;24:123-128. https://doi.org/10.1007/s10067-004-0984-6
  16. Jenkinson TR, Mallorie PA, Whitelock HC, Kennedy LG, Garrett SL, Calin A. Defining spinal mobility in ankylosing spondylitis (AS). The Bath AS Metrology Index. J Rheumatol. 1994;21:1694-1698.
  17. Miller MD, Ferris DG. Measurement of subjective phenomena in primary care research: the Visual Analogue Scale. Fam Pract Res J. 1993;13:15-24.
  18. Küçükdeveci AA, Sahin H, Ataman S, Griffiths B, Tennant A. Issues in cross-cultural validity: example from the adaptation, reliability, and validity testing of a Turkish version of the Stanford Health Assessment Questionnaire. Arthritis Rheum. 2004;51:14-19. https://doi.org/10.1002/art.20091
  19. Lukas C, Landewé R, Sieper J, et al. Development of an ASAS-endorsed disease activity score (ASDAS) in patients with ankylosing spondylitis. Ann Rheum Dis. 2009;68:18-24. https://doi.org/10.1136/ard.2008.094870
  20. Machado P, Landewé R, Lie E, et al. Ankylosing Spondylitis Disease Activity Score (ASDAS): defining cut-off values for disease activity states and improvement scores. Ann Rheum Dis. 2011;70:47-53. https://doi.org/10.1136/ard.2010.138594
  21. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142-148. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
  22. Malmstrom TK, Morley JE. SARC-F: a simple questionnaire to rapidly diagnose sarcopenia. J Am Med Dir Assoc. 2013;14:531-532. https://doi.org/10.1016/j.jamda.2013.05.018
  23. Bahat G, Yilmaz O, Kılıç C, Oren MM, Karan MA. Performance of SARC-F in Regard to Sarcopenia Definitions, Muscle Mass and Functional Measures. J Nutr Health Aging. 2018;22:898-903. https://doi.org/10.1007/s12603-018-1067-8
  24. Kara M, Kaymak B, Ata AM, et al. STAR-Sonographic Thigh Adjustment Ratio: A Golden Formula for the Diagnosis of Sarcopenia. Am J Phys Med Rehabil. 2020;99:902-908. https://doi.org/10.1097/PHM.0000000000001439
  25. Deniz O, Cruz-Jentoft A, Sengul Aycicek G, et al. Role of Ultrasonography in Estimating Muscle Mass in Sarcopenic Obesity. JPEN J Parenter Enteral Nutr. 2020;44:1398-1406. https://doi.org/10.1002/jpen.1830
  26. Eşme M, Karcıoğlu O, Öncel A, et al. Ultrasound Assessment of Sarcopenia in Patients With Sarcoidosis. J Ultrasound Med. 2022;41:951-959. https://doi.org/10.1002/jum.15780
  27. Merle B, Cottard M, Sornay-Rendu E, Szulc P, Chapurlat R. Spondyloarthritis and Sarcopenia: Prevalence of Probable Sarcopenia and its Impact on Disease Burden: The Saspar Study. Calcif Tissue Int. 2023;112:647-655. https://doi.org/10.1007/s00223-023-01074-3
  28. Neto A, Pinheiro Torres R, Ramiro S, et al. Muscle dysfunction in axial spondylarthritis: the MyoSpA study. Clin Exp Rheumatol. 2022;40:267-273. https://doi.org/10.55563/clinexprheumatol/9ljng7
  29. Ben Tekaya A, Mehmli T, Ben Sassi M, et al. Effects of biologic and target synthetic disease-modifying anti-rheumatic drugs on sarcopenia in spondyloarthritis and rheumatoid arthritis: a systematic review and meta-analysis. Clin Rheumatol. 2023;42:979-997. https://doi.org/10.1007/s10067-022-06454-y
  30. Henderson RC, Lark RK, Renner JB, et al. Dual X-ray absorptiometry assessment of body composition in children with altered body posture. J Clin Densitom. 2001;4:325-335. https://doi.org/10.1385/jcd:4:4:325
  31. Hein TR, Peterson L, Bartikoski BJ, Portes J, Espírito Santo RC, Xavier RM. The effect of disease-modifying anti-rheumatic drugs on skeletal muscle mass in rheumatoid arthritis patients: a systematic review with meta-analysis. Arthritis Res Ther. 2022;24:171. https://doi.org/10.1186/s13075-022-02858-y
  32. Rodriguez VR, Protopopov M, Proft F, et al. Treatment response to biological disease modyfying anti-rheumatic drugs is associated with favorable changes of the body composition in patients with ankylosing spondylitis. Ann Rheum Dis. 2020;79(Suppl 1):734-735. https://doi.org/10.1136/annrheumdis-2020-eular.3868
  33. Vial G, Lambert C, Pereira B, et al. The Effect of TNF and Non-TNF-Targeted Biologics on Body Composition in Rheumatoid Arthritis. J Clin Med. 2021;10:487. https://doi.org/10.3390/jcm10030487
  34. Marcora SM, Chester KR, Mittal G, Lemmey AB, Maddison PJ. Randomized phase 2 trial of anti-tumor necrosis factor therapy for cachexia in patients with early rheumatoid arthritis. Am J Clin Nutr. 2006;84:1463-1472. https://doi.org/10.1093/ajcn/84.6.1463
  35. Santo RC, Silva JM, Lora PS, et al. Cachexia in patients with rheumatoid arthritis: a cohort study. Clin Rheumatol. 2020;39:3603-3613. https://doi.org/10.1007/s10067-020-05119-y
  36. Briot K, Garnero P, Le Henanff A, Dougados M, Roux C. Body weight, body composition, and bone turnover changes in patients with spondyloarthropathy receiving anti-tumour necrosis factor α treatment. Ann Rheum Dis. 2005;64:1137-1140. https://doi.org/10.1136/ard.2004.028670
  37. Briot K, Gossec L, Kolta S, Dougados M, Roux C. Prospective assessment of body weight, body composition, and bone density changes in patients with spondyloarthropathy receiving anti-tumor necrosis factor-alpha treatment. J Rheumatol. 2008;35:855-861.
  38. Durnez A, Paternotte S, Fechtenbaum J, et al. Increase in bone density in patients with spondyloarthritis during anti-tumor necrosis factor therapy: 6-year followup study. J Rheumatol. 2013;40:1712-1718. https://doi.org/10.3899/jrheum.121417
  39. Hmamouchi I, Roux C, Paternotte S, Kolta S, Dougados M, Briot K. Early increase of abdominal adiposity in patients with spondyloarthritis receiving anti-tumor necrosis factor-α treatment. J Rheumatol. 2014;41:1112-1117. https://doi.org/10.3899/jrheum.131150