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ABSTRACT

Obesity currently represents a major societal and health problem worldwide. Its prevalence has reached epidemic levels, and 
trends continue to increase; This, in turn, reflects the need for more effective preventive measures. Dietary composition is one 
of the main factors that modulate the structure and function of the gut microbiota. Therefore, abnormal dietary patterns or 
unhealthy diets can alter gut microbiota-diet interactions and alter nutrient availability and/or microbial ligands that transmit 
information from the gut to the brain in response to nutrient intake, thereby disrupting energy homeostasis. Accordingly, this 
review aims to examine how dietary composition modulates the gut microbiota and thus the potential effects of these biological 
products on energy homeostasis through gut-brain based mechanisms. It also assesses the knowledge gaps and advances 
needed to clinically implement microbiome-based strategies to improve gut-brain axis function and therefore combat obesity.
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INTRODUCTION

According to the World Atlas of Obesity 2023 report, 
38% of the world’s population is overweight or obese. 
It is predicted that this rate will reach 51% by 2035.1 
Despite the urgent need for prevention and cure of 
obesity and obesity-related metabolic diseases, there are 
few successful treatment options available. Gut microbial 
modulation has emerged as a potential therapeutic 
approach in the treatment of obesity.2 The gut microbiota 
is a complex community of microorganisms that live in 
the gastrointestinal tract and have established a close 
symbiotic relationship with the human host. It plays a 
very important role in maintaining health, allowing the 
metabolism of indigestible dietary components and 
the synthesis of certain vitamins, preventing pathogen 
colonization and contributing to the development of the 
immune system. The human gut microbiota is mostly 
made up of two dominant bacterial phyla, Firmicutes 
and Bacteroidetes, representing more than 90% of the 
total population, and other subdominant phyla including 

Proteobacteria, Actinobacteria, and Verrucomicrobia. It is 
reported that a higher rate of Firmicutes and a decreased 
population of Bacteroidetes are often observed in obese 
individuals, so an increased Firmicutes/Bacteroidetes 
ratio is reported as a marker of obesity.3 This microbial 
imbalance can lead to changes in host metabolism, 
ultimately leading to body weight gain. In other words, the 
composition of the microbiota both can be a risk factor for 
obesity and lifestyle factors that cause the development 
of obesity can affect the composition of the microbiota.2

The gut-brain axis, on the other hand, is a two-way 
hormonal and neural signal pathway. There are several 
mechanisms that connect the gut to the brain in the 
regulation of metabolic homeostasis. Classically, signals 
from the gut in response to food intake during meals are 
transmitted to the brain, and the central nervous system 
(CNS) is informed about the size and composition of 
food.4 The brain, specifically the hypothalamus, combines 
these gut-derived signals with others to coordinate the 
regulation of food intake, energy expenditure, and glucose 
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homeostasis. Accordingly, in this review, it is aimed to 
provide an overview of how the gut-brain axis contributes 
to energy balance and body weight regulation.

GUT-BRAIN AXIS IN ENERGY BALANCE

Increased intake of high-energy-density, palatable foods 
disrupts brain circuits that control energy homeostasis; 
inadequate response of these circuits to food signals 
alters feeding behavior, which in turn contributes to an 
individual’s body weight gain. Accordingly, the restoration 
of nutrient signaling via the gut-brain axis represents a 
promising strategy to improve the central control of 
energy homeostasis in response to meals, thereby helping 
to combat obesity.5,6 The gut microbiota is a biological 
factor that can directly or indirectly influence nutrient 
perception, and theoretically, modulation of it could help 
restore gut-brain communication and maintain energy 
homeostasis.2,4

Major mediators of the gut-brain axis
The intestinal wall is the largest surface barrier between 
the human body and the outside world. The components 
of this barrier include microbiota, mucus, epithelial 
monolayers, and immune cells. Intestinal epithelial 
cells consist of apical and basolateral area. Immune 
cells are located in the lamina propia.7 Bidirectional 
communication between the brain and gut microbiota 
is mediated by various pathways, including the immune 
system, neuroendocrine system, enteric nervous system 
(ENS), circulatory system, and vagus nerve.8 Signals from 
the brain are transmitted to the gut mainly through the 
autonomic nervous system and the hypothalamic-pituitary 
axis to regulate many physiological processes.9 The vagus 
nerve is called the “wandering nerve” because of its 
long extensions that originate from the brain stem and 
stimulate many internal organs. Inside the intestine, the 
vagal afferent ends are scattered in different layers. The 
physiological function of a large number of vagal afferent 

neurons, which are important for the regulation of energy 
and glucose homeostasis, is that they contain receptors 
for intestinal peptides released by enteroendocrine 
cells (EECs).10 Intestinal epithelial cells, EECs, neuropod 
cells, and enterochromaffin cells (ECs) secrete intestinal 
peptides, including glucagon-like peptide-1 (GLP-1), 
Cholecystokinin (CCK), glucose-dependent insulinotropic 
polypeptide (GIP), and Peptide YY (PYY) on the basolateral 
side.6,8 These intestinal peptides are released in the 
immediate vicinity of vagal afferent neurons that connect 
the intestinal mucosa to the nervous system and activate 
these neurons. Vagal afferent neurons send signals to 
the nucleus tract solitarius (NTS), which can send signals 
to high-grade brain regions such as the curved nucleus 
(ARC).4 ARC includes two subpopulations of neurons;αα 
those expressing anorexigenic propiomelanocortin 
(POMC), α precursor to melanocyte-stimulating hormone 
(α-MSH), and cocaine and amphetamine-regulated 
transcript (CART); and neurons expressing the agouti 
gene-related peptide (AgRP) and neuropeptide Y (NPY). 
Vagal afferent neurons are also activated through the 
ENS, known as the “second brain,” which can regulate GI 
function independently of CNS action; this system can be 
activated by the release of gut-derived neurotransmitters 
such as 5-HT from ECs and intraganglionic laminar 
endings that sense gut tension.5,7

How Does Food Sensing Occur by Enteroendocrine 
Cells?
Different macronutrients act through alternative pathways 
to drive the release of the gut peptide.10 Fatty acids can 
signal through multiple receptors on both the apical 
and basolateral membranes. Signaling in the basolateral 
membrane requires the uptake and packaging of fats 
into chylomicrons in enterocytes, followed by the release 
and breakdown of these chylomicrons on the basolateral 
surface.11,12 Fatty acids bind to their receptors on 
enteroendocrine cells, and these activate a downstream 
signaling cascade that leads to the fusion of vesicles 
containing the gut peptide and the release of their 
contents across the basolateral membrane.13

Glucose sensing occurs in the apical membrane of an EEC 
and requires its uptake into the cell along with Na+ via the 
Sodium/glucose cotransporter 1 (SGLT-1). Na+ entry into 
EEC causes depolarization followed by activation of Ca+2 
channels, resulting in vesicle fusion and intestinal peptide 
release.14

Amino acid signaling in the enteroendocrine cell involves 
the uptake of peptides and Na+ via peptide transporter 1 
(PepT1) in the apical membrane. This Na+ can depolarize 
cells, but research is still needed to determine the exact 
mechanism of action. Amino acids are transported outside 
the cell via the basolateral membrane, where they can 
activate the calcium-sensing receptor (CaSR), leading to 

Main Points

• The gut microbiota produces metabolites and microbial 
products such as short-chain fatty acids and secondary 
bile acids that regulate the host’s energy balance and 
body weight regulation.

• The gut microbiota metabolites act as signaling 
molecules that regulate energy intake and storage and 
energy expenditure by affecting the gut-brain axis and 
interact with the host in multiple ways.

• Enteroendocrine cells in the intestinal epithelium 
perceive nutritional and microbial signals and can 
regulate enteric and vagal neuronal pathways in 
response to microbial signals, thereby contributing to 
energy balance and body weight regulation.
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Ca+2 release and vesicle fusion. CaSR may also be present 
in the apical membrane, but research is still needed 
to elucidate the exact mechanism of protein-derived 
intestinal peptide release.15,16 

Effect of Intestinal Peptides on Energy Balance and 
Regulation of Body Weight
Activation of the nutrient sensors of EECs initiates the 
secretion of gut peptides, and these peptides trigger 
downstream processes that are essential for maintaining 
post-meal energy homeostasis.17 The gut peptides that 
have been studied most extensively are cholecystokinin 
which is secreted mainly in the upper part of the intestine, 
GIP, and glucagon-like peptide-1, which is secreted mainly 
in the distal part, and the peptide tyrosine tyrosine.18

Incretins;The 2 hormones responsible for increasing insulin 
secretion after oral food intake are intestinal peptides, 
GLP-1 and GIP.19 GLP-1 can also modulate satiety: 
Chronic treatment with Glucagon-like peptide-1 receptor 
(GLP1R) agonists (compounds that bind to cell receptors 
to create a response in the cell) in the long-term control of 
food intake serves to suppress food intake and promote 
weight loss.6 Suppression of food intake with the GLP-1R 
agonist requires GLP-1R expression on glutamatergic 
neurons of the CNS.20 However, prolonging the half-life 
of endogenous GLP-1 by inhibiting dipeptidylpetidase-4 
(DPP4) is also reported to be ineffective in modifying 
food intake, although it potentiates the incretin effect of 
endogenous GLP-1.21

Intestinal GIP is secreted from K cells in the duodenum 
and proximal jejunum in response to food intake and by 
acting as an incretin, increases glucose-dependent insulin 
release from pancreatic β cells and contributes to the 
normalization of postprandial plasma glucose and thus 
energy balance.19 

Peptide YY (PYY) is a 36-amino acid gastrointestinal 
hormone secreted predominantly by intestinal L cells.22 
PYY, or more specifically its active form PYY3-36, is known 
for its role in the “ileal break,” which slows the passage 
of chyme to ensure adequate digestion in the proximal 
intestine.23 In addition to its satiety-enhancing effect 
through ileal break, PYY3-36 may also reduce food intake 
through independent mechanisms without reducing 
intestinal motility. PYY exerts an anorexigenic effect 
through vagal afferents and crossing the blood-brain 
barrier.24 PPYY3-36 also directly and indirectly stimulates 
POMC activity through inhibition of NPY neurons and 
nerve terminals that activate adjacent POMC neurons 
and induces prolonged upregulation of POMC mRNA 
expression.25 In this respect, PYY analogues, together 
with GLP-1 receptor agonists, are reported as a promising 
therapeutic approach for obesity with their beneficial 
effects on energy balance and food intake preference.26

Microbial Metabolites Mediating Energy Balance and 
Body Weight Regulation
Gut microbiota is reported as an environmental factor 
that regulates the host’s energy balance.2 It increases the 
host’s ability to obtain energy from food and produces 
metabolites and microbial products such as short-chain 
fatty acids, secondary bile acids, and lipopolysaccharides. 
These metabolites and microbial products act as signaling 
molecules that regulate appetite, intestinal motility, 
energy intake and storage, and energy expenditure.8,10

Short Chain Fatty Acids
Adding fermentable carbohydrates, including dietary 
fibers and resistant starch, to the diet reduces food intake 
and body weight gain and improves glucose metabolism 
in rodents and humans.25 It has been stated that these 
effects are partly mediated by short-chain fatty acids 
(SCFAs). SCFAs are produced in a fermentation process 
from carbohydrates (resistant starch, dietary fiber, and 
other low-digestible polysaccharides) that cannot be 
digested by the microbiota in the colon and distal small 
intestine. Acetate, propionate, and butyrate are the 
predominant SCFAs in the intestinal lumen in humans and 
rodents.27

SCFAs are known to regulate food intake by modulating 
hypothalamic function, reaching the systemic circulation 
to the brain, or directly through food signaling mediated 
by GLP-1 and PYY produced/released in EECs, or through 
vagal afferents (such as activating adipose tissue to 
release leptin hormone).28 Its microbial-derived SCFAs 
are absorbed into the bloodstream and affect whole-
body physiology through mechanisms that may include 
G protein-coupled receptors (GPCRs), also called free 
fatty acid receptors (FFARs).29 Among SCFAs, acetate 
appears to reach the brain through systemic pathways, 
while propionate and butyrate mainly activate nutrient 
sensing pathways in the gut. Of these SCFAs, propionate, 
in particular, is reported to centrally control intestinal 
gluconeogenesis, a process that confers metabolic 
benefits, including reduced endogenous glucose 
production, independent of insulin.30 Furthermore, like 
acetate, elevated plasma propionate levels promote 
hypothalamic anorexigenic neuronal activation by 
inducing leptin release from adipocytes through FFARs-
dependent mechanism. Butyrate, on the other hand, is 
reported to be the most potent stimulant of anorexigenic 
peptides and the most potent suppressor of food 
intake.27 Intestinal butyrate can transmit satietogenic 
signals by stimulating GLP-1 and GIP secretion in L 
cells and K cells, respectively, and these effects are 
potentiated by ghrelin inhibition.31 These fatty acids also 
increase insulin sensitivity and mitochondrial function 
in muscle cells, support pancreatic function, including 
insulin secretion and beta cell activity, and reduce lipid 
accumulation and glucose production in the liver.28 Gut 
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bacterial SCFA-activated free fatty acid receptors 2 and 
3 (FFAR2/3) modulate adipose tissue physiology of the 
host by activating AMP-activated protein kinase (AMPK) 
in white adipose tissue (BAD), inhibiting cyclic adenosine 
monophosphate (cAMP) activation, adipogenesis, 
activation of UCP-1, and browning by increasing fatty acid 
oxidation, thereby reducing body weight and whole-body 
metabolic It regulates homeostasis.29

The mechanism involving the production of leptin, the 
satiety hormone derived from adipose tissue, under the 
influence of SCFAs, is the most studied mechanism.32 
It has been reported that leptin binds to receptors 
in the brain and inactivates NPY and AgRP in normal 
physiological conditions, suppressing appetite, as well 
as inducing POMC mRNA expression.33 The released 
leptin is transported across the blood-brain barrier (BBB) 
to perform its function, and Leptin Receptor-a (LepRa) is 
needed in this process.34

Pathologically, in obese individuals, an excessively high 
level of leptin in plasma causes saturation of LepRa 
and thus leads to leptin resistance reducing the rate of 
leptin transport across the blood-brain barrier (BBB). A 
number of factors and specific mechanisms underlying 
the development of this condition are linked to cellular 
signaling of leptin.35 Two points are emphasized regarding 
the disruption of leptin cellular signaling. First, neurons 
expressing LepR are not sensitive enough to measure 
circulating leptin levels, which reduces the effectiveness 
of leptin’s binding to LepR. Second, the signaling ability 
of LepR-expressing cells is impaired. For example, it has 
been reported that proinflammatory factors such as IL-6 
may increase with intestinal dysbiosis and indirectly affect 
leptin secretion and functionality, and their importance 
in energy metabolism and body weight regulation has 
been reported.33 In addition, circulating leptin-binding 
proteins such as plasma-soluble LepR and C-reactive 
protein bind competitively to leptin and promote the 
development of leptin resistance. Binding of leptin to 
circulating leptin-binding proteins inhibits leptin transport 
to the CNS, suppresses the interaction between leptin 
and LepR neurons, and induces phenotypes associated 
with leptin resistance. Leptin resistance develops not only 
in the brain but also in peripheral tissues such as skeletal 
muscle, adipose tissue, and liver, which may provide new 
perspectives on obesity treatment.36

Microbial Metabolites of Bile Acids
Bile acids (BA) are steroid acids synthesized from 
cholesterol in the liver, conjugated to taurine or glycine, 
and released in the duodenum after food intake to 
facilitate the absorption of dietary lipids and fat-soluble 
vitamins.37,38 The majority of primary BA secreted in the 
gut is actively reabsorbed in the ileum and transported 

back to the liver via the portal circulation.39 The remaining 
small portion of the primary BA is deconjugated and 
dehydroxylated by gut bacteria in the ileum and colon 
and converted into secondary BAs.37,40 Bacterial bile 
salt hydrolases (BSH) are enzymes required for the 
deconjugation of primary BAs to secondary BAs. BAs have 
also been shown to play a role in the regulation of glucose 
and lipid metabolism and energy expenditure through 
activation of BA receptors in the liver, intestine, and 
peripheral tissues. The effect of secondary BAs resulting 
from gut microbiota activity on the brain is still poorly 
studied, but current studies report that secondary BAs can 
potentially modulate food intake and energy homeostasis 
through afferent pathways through TGR5-GLP-1 and/or 
5-HT gut sensing pathways.41,42 Specifically, secondary 
bile acids stimulate GLP-1 secretion by activating G 
protein-coupled receptors (TGR5) on L cells, and thus its 
role in stimulating saturation in vagal afferent neurons has 
been demonstrated.43 TGR5 receptors are also found in 
skeletal muscle and brown adipose tissue, where they 
increase energy expenditure promoting the conversion 
of inactive thyroxine (T4) to active thyroid hormones 
(T3).44 Bile acids have been shown to act on farnesoid 
X receptors (FXR). Insulin release increases during BA 
binding of FXR to pancreatic β cells. Bile acid activation 
of intestinal FXR-containing cells stimulates the secretion 
of fibroblast growth factor-19 (FGF-19), a protein that 
contributes to the improvement of peripheral glucose 
excretion and lipid homeostasis, increasing metabolic 
rate, and reducing weight. FGF-19 may improve glucose 
tolerance by regulating insulin-independent glucose flow 
and hepatic glucose production.45 Thus, secondary bile 
acids exert potential effects on the host’s energy balance, 
glucose homeostasis, and body weight regulation.

Amino Acid-Derived Metabolites
Also known as serotonin, 5-HT is synthesized from 
tryptophan, an important amino acid derived from 
dietary proteins in the gut as well as in the brain. 5-HT 
is released from enterochromaffin cells upon intraluminal 
pressure and leads to activation of receptors and 
peristaltic action.46 Derived from the intestines, 5-HT has 
also been shown to be important for starvation-induced 
adaptation by promoting lipolysis in adipose tissue and 
gluconeogenesis in the liver, thereby increasing energy 
availability for other organs in the body.47 5-HT receptors 
are expressed in many cell types in the gut, including 
enterochromaffin cells, goblet cells, enterocytes, vagal 
and spinal afferent nerves, and enteric nerves. The gut 
microbiota, through its metabolites, is reported to induce 
the release of 5-HT in the colon and indirectly in the small 
intestine by stimulating GLP-1 secretion.42

Tryptophan can be fermented into indole, a ligand of 
the arylhydrocarbon receptor (AHR), a transcription 
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factor that regulates gene expression. In vitro assay with 
GLUTag cell lines shows that activation of AHR with an 
agonist increases GLP-1 secretion as well as proglucagon 
expression.48 Obesity in mice has been associated with 
an increase in gut IDO1, an enzyme that catalyzes the 
breakdown of tryptophan via the kynura pathway, thereby 
limits bacterial indole production from tryptophan and 
increases its derivatives such as kynurinin and kyuronic 
acid.49 Intraperitoneal administration of kynuronic acid 
in mice has been shown to induce energy expenditure 
without affecting food intake.50

To date, studies on the effect of γ-Aminobutyric acid 
(GABA), which is produced by the gut microbiota from the 
dietary amino acid glutamate, on gut-brain communication 
and thus the control of energy homeostasis are insufficient. 
GABA is the main inhibitory neurotransmitter in the 
central nervous system. Peripheral GABA cannot cross the 
blood-brain barrier, but it has been reported to activate 
nutrient sensing signaling pathways in the gut.51 However, 
more studies are needed to understand its contribution to 
energy homeostasis and the regulation of body weight.

THE EFFECT OF DIETS’ MACRONUTRI-
ENT RATIO CHANGES ON ENERGY BAL-
ANCE AND BODY WEIGHT REGULATION 
THROUGH MICROBIOTA-GUT-BRAIN COM-
MUNICATION

Dietary interventions, such as high-protein or high-
fat diets, which are characterized by large differences 
in macronutrient ratios, affect the composition and 
function of the gut microbiota.52 The composition in the 
macronutrients of these diets exerts a significant influence 
on the availability of gut microbiota-derived ligands, 
luminal content, which can control food intake and energy 
metabolism. The availability of these ligands depends 
on many biological processes, including microbiota-
mediated catabolism of digested nutrients and their 
absorption by enterocytes.10,17 

It has been reported that in normal-weight or obese 
individuals, high-protein meals provide the most satiety 
compared to isocaloric diets containing high carbohydrates 
or fats, and this effect is due to PYY, the secretion of which 
is preferentially increased by proteins.7,8 In addition to 
gut peptides, high-protein diets modulate the gut-brain 
axis to control food intake and energy metabolism by 
stimulating gut gluconeogenesis from the postprandial to 
postabsorption periods.53 Peptides digested in the small 
intestine antagonize μ-opioid receptors in the spinal and 
vagal afferents of the portal vein, whic is a signal that 
centrally activates intestinal gluconeogenesis. In addition, 
enriched protein meals are a source of gluconeogenesis 

substrates such as glutamine and glutamate for the 
intestines. Compared to carbohydrates and fats, proteins 
also have the highest effect on triggering thermogenesis. 
Although the underlying mechanisms need to be 
elucidated specifically for proteins, thermogenesis-
dependent gut-brain axis mechanisms mediated by gut 
hormones have been identified.54 For example, GLP-1 
centrally enhances thermogenesis through sympathetic 
efferents, and the duodenal hormone secretin activates 
thermogenesis postprandial to induce satiety.55 High-
protein diets also increase the amount of amino acids 
that can be fermented by the gut microbiota in the colon 
to obtain energy and produce nutrient-sensing ligands. 
These include amino acid-derived SCFAs, branched-chain 
fatty acids, and other molecules derived from tryptophan 
or glutamate. Compared to carbohydrates, fermentation 
of proteins produces less SCFA, but still contributes 
significantly to the production of microbial organic acids. 
However, there are few studies that address the relational 
or causal links between gut microbiota and high-protein 
diets on the control of food intake and energy homeostasis 
via the gut-brain axis. Furthermore, additional studies are 
needed to evaluate the risks and benefits of high-protein 
dietary interventions in improving metabolic health. 
There are studies reporting that such dietary interventions 
reduce butyrate production and increase the levels of 
mucosal and renal toxic compounds.56,57

Low-carbohydrate diets, on the other hand, have been 
reported to have a lower capacity to stimulate brain 
regions associated with food intake, compared to diets 
high in carbohydrates.58,59 However, the exact mechanisms 
underlying the satiety effects caused by these diets, 
particularly those dependent on the gut microbiota, still 
remain unclear. Some studies suggest that diet-induced 
ketogenesis mediates decreased circulating ghrelin levels 
associated with decreased appetite in overweight/obese 
individuals following a low-energy diet, although ketone 
bodies inhibit GLP-1 release by EECs and directly activate 
orexigenic hypothalamic pathways in the brain.60,61 Similar 
to SCFAs, ketone bodies have also been reported to 
initiate GPR41 and GPR43 signaling to control energy 
metabolism.62 To date, it has not been investigated 
how these ketone bodies affect the hypothalamus via 
GPR41/43, and more research is needed.

CONCLUSION

The gut microbiota plays a crucial role in maintaining 
energy balance and glucose homeostasis. EECs in the 
GI tract can sense nutrients and release a variety of gut 
peptides to affect both energy balance and glucose 
homeostasis. However, more studies are needed to fully 
understand the mechanisms by which various nutrients 
activate EECs and release gut peptides. The hypothalamic 
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circuits, which control energy balance in response to food 
intake, need to be studied further in terms of body weight 
management.
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